Whitepaper: Debugging Data: Why Data Quality Is Essential for AI and Machine Learning Success

Whitepaper - Debugging Data: Why Data Quality Is Essential for AI and Machine Learning Success

H

In most applications we use today, data is retrieved by the source code of the application and is then used to make decisions. The application is ultimately affected by the data, but source code determines how the application performs, how it does its work and how the data is used.

Today, in a world of AI and machine learning, data has a new role – becoming essentially the source code for machine-driven insight. With AI and machine learning, the data is the core of what fuels the algorithm and drives results. Without a significant quantity of good quality data related to the problem, it’s impossible to create a useful model.

Download this Syncsort Whitepaper to learn why the process of identifying biases present in the data, is an essential step towards debugging the data that underlies machine learning predictions and most importantly, improves data quality.

After registering, you will be sent a verification email to the email address supplied.

Please check your junk folder if you do not receive this email soon, or call us for a human touch

You may also be interested in the following:

Whitepaper: Future proof your data
Trillium for Big Data
Whitepaper: Enterprise data quality improvement
Absa Capital case study

Our Privacy Policy

MDM is committed to the protection of personal information.

For our Privacy Policy, click here

Free Joomla! templates by AgeThemes