Data Governance versus Data Quality

Data quality and data governance both strive to optimise data and information to meet business needs.

Simplistically, however, where Data Governance deals with the definition of, and responsibility for, data management standards, Data Quality deals with the practical implementation, monitoring and enforcement of these data management standards for individual platforms and systems. Both data governance and data quality require a balanced combination of process, people and technology in order to be successful.

If data governance asks "What must we do and who is responsible?", data quality answers "How will we do it?"

Data Quality is a critical enabler for Data Governance

Data Governance provides focus for Data Quality effort

While data quality can deliver value at a single project level, it is best delivered as part of an overall data management strategy, owned by the Data Governance function. Effective data governance must foster business involvement and responsibility by emphasising the business impact of poor governance. Similarly, enterprise data quality initiatives must nurture business involvement.

For this reason, a strategic data quality platform must:

  • Support collaboration between large data management teams, ranging from business data stewards, to data scientists, to the technical application integration teams, in order to enable the complete data management life cycle - from Data Governance definitions, to Data Quality deployment, to Data monitoring and Issue Remediation.

  • Provide rapid time to value through the leveraging of inbuilt data quality intellectual property that can give value off the shelf and help your data management team to deliver based on data quality best practice.

  • Have strong, certified support for all major enterprise application and platforms to ensure a consistent application of required data quality standards across the enterprise via reusable data quality services and processes

Our preferred platform achieves these goals and, in addition, allows us to leverage the knowledge and experience of data quality specialists with over forty years focus on addressing data quality challenges, and over 2000 clients in more than 100 countries around the around world.

No events

Follow Us on Facebook Google+ Follow Follow Us on Twitter Follow Us On LinkedInyoutube

MDM is committed to the protection of personal information.

For our Privacy Policy, click here

Subscribe to our monthly newsletter for data management tips, updates and news
Country *
We will not share you details
Unsubscribe at any time
Please wait
  • 4 benefits of a business glossary

    Data Quality Matters Jan 15, 2019 | 08:05 am

    In its most basic form a business glossary is a set of definitions for commonly used business terms, aggregations, etc Many organisations may start with a spreadsheet of terms. However, over time, the need to provide context to the business[…]